Reverse order law for reflexive generalized inverses of products of matrices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Further Results on the Reverse Order Law for Generalized Inverses

The reverse order rule (AB)† = B†A† for the Moore-Penrose inverse is established in several equivalent forms. Results related to other generalized inverses are also proved.

متن کامل

The reverse order law for Moore-Penrose inverses of operators on Hilbert C*-modules

Suppose $T$ and $S$ are Moore-Penrose invertible operators betweenHilbert C*-module. Some necessary and sufficient conditions are given for thereverse order law $(TS)^{ dag} =S^{ dag} T^{ dag}$ to hold.In particular, we show that the equality holds if and only if $Ran(T^{*}TS) subseteq Ran(S)$ and $Ran(SS^{*}T^{*}) subseteq Ran(T^{*}),$ which was studied first by Greville [{it SIAM Rev. 8 (1966...

متن کامل

A new equivalent condition of the reverse order law for G-inverses of multiple matrix products

In 1999, Wei [M.Wei, Reverse order laws for generalized inverse of multiple matrix products, Linear Algebra Appl., 293 (1999), pp. 273-288] studied reverse order laws for generalized inverses of multiple matrix products and derived some necessary and sufficient conditions for An{1}An−1{1} · · ·A1{1} ⊆ (A1A2 · · ·An){1} by using P-SVD (Product Singular Value Decomposition). In this paper, using ...

متن کامل

Ela the Reverse Order Laws and the Mixed-type Reverse Order Laws for Generalized Inverses of Multiple Matrix Products

In this paper, necessary and sufficient conditions for a number of reverse order laws and mixed-type reverse order laws are derived by using the maximal ranks of the generalized Schur complements.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1998

ISSN: 0024-3795

DOI: 10.1016/s0024-3795(97)10068-4